
Tutorial: Digital threads with OSLC

Erik Herzog – Technical Fellow, SAAB Aeronautics

Eran Gery – Global Systems Engineering Solutions Lead, IBM

Contributors: Jad El-khoury, LynxWorks

Ian Green, IBM

JEK0JEK1

Slide 1

JEK0 1. Can we list (a) Speakers (b) contributors/authors to make it clear.
1. My name is Jad El-khoury 😊
2. Should we put our affiliations?
Jad El-Khoury, 2023-06-12T11:19:20.767

JEK1 Overall comment:

The slides seem to have different formats, layout, fonts. This can be confusing/irritating to the reader.
Can we make more consistent?
Jad El-Khoury, 2023-06-12T11:49:49.499

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 2

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Digital thread

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 3

• Digital
• Multi-disciplinary
• Fine-granular

• Linked
• Analytics
• Authoritative

Singh, V., & Willcox, K. E. (2018). Engineering
design with digital thread. AIAA Journal, 56(11),
4515-4528.

The use of digital tools and representations for
design, evaluation, and life cycle management

End-user needs
Saab Aeronautics as an example of

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 4

Saab Aeronautics – the old game

5

1950 1970 1990

• One customer
• One operations approach –

national defence
• One project at a time
• Long development times
• Predictability: Sweden and

Saab

The new Game
• Multiple parallel projects

• International operations and
interoperability

• Exports

• International collaboration

• Multi-site Development &
Production

• More stringent international
regulations

• Speed!

• Product development

• Enabling systems

• Unpredictable future

6

2000 2020

System characteristics

• Long lifecycles – yes, indeed!

• Safety critical systems

• Continuous development

• Development system life is shorter than
System life

• Historical observation

• Need to replace development system
trice over the life of the system

7

Early
concept
(5 years)

Full-scale
development

(basic platform)
(10 years)

Fully operational
capabilities
(10 years)

Upgraded
capabilities
(20 years)

Maintenance
and support
(10 years)

Disposal
(5 years)

A look at the enabling systems

8

System

System-of-
interest

Development
System

Test
System

Training
System

Disposal
System

Production
System

Deployment
System

Support/
Maintenance

System

Enabling Systems

SystemSystem elementSystem element

We are good at
architecting this

part of the system

Less attention on
Enabling systems –
they tend to emerge

SAAB as-is development system landscape

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 9

Change
Control

Config Item
Structure

Requirement
Management

Realisation
structure

System
Design

Analysis

Software
development

Mechanical
design

Document
Management

Architecting the development system

New strategic directions for thriving in the new
unpredictable world:

• Alignment with best international practise

• Need to architect organisation and development
environment for Flexibility

• Optimise overall capability

• Ability to adapt the latest processes,
methodology and tools

• Capability to maintain multiple versions and
variants of product data

• Keep the development system relevant over time

• Quick adaptation to new scenarios

• At low cost

10

Criteria for a development system

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 11

• Digital
– Fine granular objects and relationships

• Integrated
– Integrated support for multiple disciplines and roles

• Heterogeneous
– Provided by multiple vendors

• Modular
– Each component provide self-sufficient services

• User-friendly
– Easy to use across integration boundaries

• Affordable
– Integration of new components off the shelf or att very low investment cost

• Maintainable
– Ability to stand the test of time as individual components evolve

Additional criteria?

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 12

The Saab Genesis architecture
An Example

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 13

Genesis PLM Model

• Engineering Disciplines

• Fine granularity product data

• Design Traceability Dimensions

• We believe there are four of
them only

• Archiving

Change
Control

Config Item
Structure

Systems Engineering

Hardware Engineering

Software Engineering

…… Engineering

Requirement
Management

Realisation
structure

Archive

Modularity

• Optimise support for each engineering
discipline
• Maximise automation, as provided by the

supplier
• Minimise application family switching

• Bring together management and engineers in
a single environment
• E.g., Change management and Status

reporting
• Ability to upgrade individual capabilities

independent of others
• Redundant capabilities accepted
• Ability to replace environment without

upsetting the complete PLM landscape

15

Change
Control

Config Item
Structure

Systems Engineering

Hardware Engineering

Software Engineering

…… Engineering

Requirement
Management

Realisation
structure

Archive

Traceability

• Need capability to ensure traceability and integrity
of product data

• Traceability dimensions between engineering
discipline environments
• Requirements
• Configuration item structure
• Change management
• Realization

• Configuration Management capability required for
Requirements Traceability, Configuration item
structure and Realization structure
• Versions and baseline capability

• The OSLC standard offers the desired capabilities
• Exploit for low cost and high quality

integrations

16

Change
Control

Config Item
Structure

Systems Engineering

Hardware Engineering

Software Engineering

…… Engineering

Requirement
Management

Realisation
structure

Archive

Does OSLC meet your needs?
The Tutorial question:

17

Prevailing situation and solution
alternatives

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 18

The challenge – sustainining multidisciplinary complex
engineering environments

19

• Engineering data is siloed across
teams and applications (ASOTs)

• How to ensure
• Continuity and consistency of data

across related artifacts?

• Proper assessment of impact and
manage changes across all ASOTs?

• Gaining the right insights to conduct
engineering assessments by enabling
joint digital viewpoints?

• Management of configurations
baselines and branches across all
datasets?

• effective collaboration across all
stakeholders to foster agile
engineering?

System
Models

Agile SW Apps

IBM EWM

Few key engineering questions…

20

How do I make sure
that my design satisfies

all the sustainability
requirements?

What is the impact
of modifying this

requirement across
all disciplines?

Is my electrical design
baseline consistent with
my software baseline?

Does the operational
data align with my

design assumptions?

How can I reuse
design components

from another
product?

How do I prove that
my test plan covers

all the
requirements?

What is the overall
energy consumption

across all
viewpoints?

Approaches for attaining the digital engineering vision

21

• Point to point integrations
• Does not scale, no support for central view points

• Centralized - all domain data synchronized to a
central repository

• Often challenges to authoritative source concept,
domain tools isolated

• Proprietary – limited tool selection

• MBSE backbone - Import various domain data to
an MBSE tool

• Replication of data of authoritative tools

• Does not scale

• Centralized Link management – central link
repository

• Domain tools not aware of links; versioning issues

• Linked federated data (OSLC approach)
• No replications of data
• Collaborative and Standardized
• Supports digital viewpoints (as defined by

DEIXWG)

Requirements
Management

Test
Management

Electrical Design
Mechanical design

Systems Engineering
Applications

System
Models

Multi-domain
Simulation

Agile SW AppsVariant
Management

Electrical & Mechanical

Open, Federated, Standards based
lifecycle integration framework

IBM EWM

Agile SW Apps Mechanical

E-CAD M-CAD
EWM

Electrical

JEK0

JEK1

Slide 21

JEK0 What is ASOT? Spell it out?
Jad El-Khoury, 2023-06-12T11:20:59.421

JEK1 "Open Federated Standards based lifecycle integration" Does not read so well.
Why not call it "Federated Linked Data" like you do in the text?
Jad El-Khoury, 2023-06-12T11:22:04.178

Key digital threads enabler capabilities

22

• Digital continuity: establish digital information
models based on standard resource types and
relationships across all domains tools

• Enable cross domain data exchange through
standard data representations

• Global configuration management: manage
consistency across all engineering data sources
using cross tools configuration management

• Cross lifecycle analytics and viewpoints: produce
the necessary insights and evidence from across all
domain tools

• Integrated change and process management
across all engineering data and tools

Incose IS 2023

information model required by DO178 DALs

Agenda

1. OSLC goals and digital threads use cases
2. OSLC foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 23

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Open Services for lifecycle (OSLC)

• Specifies standard lifecycle information models
based on W3C ontologies

• Standard resource representation

• Linking across resources

• Open world assumption: minimal assumptions on
data models and services

• Enable discovery

• Enables collaboration across tools based on
standard REST services for complete modularity

• Enable integration of existing tools with no
assumption of how they are implemented

• Enable services for cross lifecycle viewpoints and
analytics

A lifecycle integration framework based on open data model and
services standards across a federated set of tools

24

OSLC Member Section

http://oasis-oslc.org

Who currently specifies OSLC at OASIS
JEK0

Slide 25

JEK0 We Should be very careful if we wan to say OASIS in the title. This is not a formel list.

If it is informal, it would be nice to add KTH and Lynxwork as well? 😊
Jad El-Khoury, 2023-06-12T11:43:13.527

A Digital Thread architecture based on OSLC services

Traceability/Impact
Analysis (ENI)

Reporting (JRS, Pub)

UAV
System

Air Vehicle

Avionics CoMMS

Ground Stn.

Global Configuration
Management

Lifecycle Analytics

Lifecycle
Links

Lifecycle
Graph
(LQE)

Linking Service

Requirements
Management Test Management

System
Analysis & Design (MBSE)

Agile SW Apps Mechanical

E-CAD M-CADEWM

Electrical

Digital Engineering Backbone

Incose IS 2023

Linked data (w3c)
• Lifecycle objects (resources) are identified by http URLs and

described using vocabularies (ontologies)
• Enables lifecycle information models with relationships across

all resources independent of their containers
• Data containers provide http services to link access and

manipulate resources

Requirement

Task

Mechanical Part

Simulation

SW Component

http://dengineering.org/rm/sys/r1

http://dengineering.org/ccm/sys/t5

System model

http://dengineering.org/am/sys/s17

http://dengineering.org/plm/sys/mc501

http://dengineering.org/am2/sys/sc281

http://dengineering.org/sim/sm55

Domain tool 1

Domain tool 2

Domain tool 3

Domain tool 4

Domain tool 5

Domain tool 6

JEK0

JEK1

JEK2

Slide 27

JEK0 URLS should be URLs (can also remove "http" before that.
Jad El-Khoury, 2023-06-12T11:22:58.815

JEK1 Instead of "specified using vocabularies" it should be "described using vocabularies"
Jad El-Khoury, 2023-06-12T11:23:54.150

JEK2 "Best on http/REST architecture" what is that meant to mean?
Jad El-Khoury, 2023-06-12T11:24:44.501

Incose IS 2023 28

Linked Data Principles

• Tim Berners-Lee’s four principles for Linking Data:

1. Use URIs as names (identity) for things

2. Use HTTP URIs so that people can look up those
names

3. When someone looks up a URI, provide useful
information using the standards (RDF, SPARQL)

4. Include links to other URIs so that they can discover
more things

The RDF data model
• RDF – Resource Definition Framework

- a standard to describe structured data on the
web.

- Generic description of linked data as a set of
triples

- RDF triples inspire a graph

• Basic structure of information: a triple

- Each triple represents and edge

- consisting of a subject, a predicate and an
object.

- The predicate denotes a relationship between
the subject and object.

- Graph nodes are resources or literals
(values)

• RDF predicates are defined in RDF vocabularies
identified by namespaces
- e.g. rdf:about

Work item
38759

Work item
28465

implements

subject objectpredicate

Incose IS 2023 30

The Key Concepts - Everything is a URI

<http://...validatedby>

RDF Triple

<http://...requirement2
8465_ improve_remote

steering>

<http://...testcase3564
5_test_steering>

<http://...priority>
“High”

Subject

= Resource

(Always a URI)

Predicate

= Relationship/property

(Always a URI)

Object

= Resource

or

= literal value

RDF graph data model - Compared to other data models

Requirement Owner Priority … Release Validated by

R28464 … … … … …

R28465 Improve
Remote Steering

Bob High … LR3.1 TC35645

R28466 … … … … … …

Bob

High

Implemen
ted

owner

priority

state

created on
Novemb
er 24,
2011

Requirement
28465 Improve

Remote Steering

Lunar
Rover

3.1

release

September
20, 2014

release
to orbit
date

owner
Iris

Janet

High

Executed

pass

owner

priority

state

result

created
on

December
7, 2011

Test Case
35645: Test

Steeringrelease

validated by

Rover Release Owner Release to orbit date

Lunar Rover 3.0 … …

Lunar Rover 3.1 Iris Sept 14, 2014

Test Case Owner Priority ...

Test Case 35645
Test Steering

Janet High ...

Lunar Rover 3.1 … ...

Closed-world assumption vs Open-world
assumption

Relational model & object-oriented model
If you are of type X, you must have these properties.

RDF (& the natural world)
If you have these properties, you must be of type X.

RDF Textual Serialization formats

<http://example.com/TestCases/1> a oslc_qm:TestCase ;

oslc_qm:validatesRequirement <http://example.com/Requirements/1>.

<rdf:description rdf:about="http://example.com/TestCases1>

<oslc_qm:validatesRequirement rdf:resource="http://example.com/Requirements/1"/>

<rdf:type rdf:resource="http://open-services.net/ns/qm#testcase”"/>
</rdf:description>

Object
Predicate

Subject

<http://...Test Case 1> oslc:qm validatesRequirement <http://...Requirement 1>
<http://...Test Case 1> rdf:type <http://open-services.net/ns/qm#testcase>

Turtle

RDF/XML

Incose IS 2023 33

Linked Data Platform (LDP)

• A W3C Recommendation that provides clarifications and
extensions of the 4 rules of Linked Data.

• Defines a set of rules for HTTP operations on web resources

- to provide an architecture for accessing, updating, creating
and deleting Linked Data resources from servers.

• Adds vocabulary and HTTP APIs to manage data containers

- E.g. ldp:contains

• Supports basic, direct, and indirect containers

• Provides standard means to traverse and maintain hierarchical
containers

• It is recommended for OSLC domains to implement the LDP
patterns

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.
<http://example.org/alice/> a ldp:Container,
ldp:BasicContainer; dcterms:title 'Alice’s data
storage on the Web’ ;
ldp:contains <http://example.org/alice/foaf> ,
<http://example.org/alice/avatar> .

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 34

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Incose IS 2023 35

HTTP based APIs (REST Architecture)
• Using the HTTP (text based) protocol as an API across distributed applications

Key concepts:

• Requests and responses

• Resources: the targets of HTTP requests. May represent various things in the target
application
- E.g. A requirement, model-element, customer, defect, list of defets

• Resources: Identified by URIs

• 4 verbs for foundational API operations
• Request = GET

• Create = POST

• Update = PUT

• Delete = DELETE

• Message parameters
- For example the expect format of the response. E.g. Accept=text/turtle

• message body: for example the resource content when creating a new resource

JEK0

Slide 35

JEK0 REST instead of RESt
Jad El-Khoury, 2023-06-12T11:27:38.906

Incose IS 2023 36

Examples: HTTP requests
• Get products from a bug tracker

- GET /tracker/ldp-demo/ HTTP/1.1

- Host: example.org

- Accept: text/turtle; charset=UTF-8

- Or:

- HTTP://example.org/ tracker/ldp-demo?accet-text/turtle&method=get (URL encoded)

• Create a new defect on tracker
- POST /tracker/ldp-demo/ HTTP/1.1

- Host: example.org

- Content-Type: text/turtle

- <> a bt:BugReport;

- dcterms:title "LDP Demo crashes when shutting down.";

- dcterms:creator <http://example.org/tracker/users/johndoe> .

Incose IS 2023 37

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query,

resource selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a

concrete system (UAV) and its cross-domain integrations

JEK0

Slide 37

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Incose IS 2023 38

The OSLC technology stack

• OSLC Contributes with
- Core: The standard rules and patterns for integrating lifecycle tools.

• How to use HTTP & RDF to perform resource creation, queries, …

- Domains: Common vocabulary for the lifecycle artifacts

Linked
Data

OSLC Domains

OSLC Core

LDP

HTTP GETPOST PUT DELETE

Resource MIME Types Content Negotiation

REST

JSON-LD Turtle

Containers, Accept-Post Link Relations

Discovery

Resource Preview

Delegated UI Attachments

Query

Authentication

Open-World Assumptions

Paging

Patch

Vocabularies Constraints

RM DM CCM QM Automation

Reducing Variability through
Self-describing, semantically
rich, linked data resources
leveraging HATEOAS

Address Complexity through
HTTP and REST as the standard
mechanism for distributed,
loosely coupled APIs

Discoverability through
Minimal, discoverable, self-
describing capabilities to enable
application integration

Domains of interest that maintain
separation of concerns and
establish collaborative value
streams through integration

HTTP 1.1 Specification,
IETF

LDP 1.0 Specification,
LDP.next Working Group,
W3C

OSLC Core 3.0
Specification, OASIS

Change Management
Configuration Management
Requirement Management
Quality Management

Incose IS 2023 39

Domain tool 1

OSLC resources and links

• OSLC resources are based on resource types specified in OSLC
vocabularies

• OSLC links are OSLC properties referencing other resource URIs

• OSLC link types are described in OSLC vocabularies

• OSLC best practice is not to replicate links across tools and use link
discovery for incoming (reverse) links

Requirement1Workitem1
implements

implementedBy

Domain tool 2

Incose IS 2023 40

OSLC Vocabularies
• OSLC vocabularies describe types of resources and resource properties specified as OWL

ontologies

• Vocabularies are described using RDFS (RDF Schema) which uses and RDF syntax

• The resource types and properties providing semantics to RDF data when used as types or
predicates

• Note: Vocabularies do not impose constraints on resources, only provide semantics

Example: requirements vocabulary
declaring the vocabulary namespace

oslc_rm: a owl:Ontology ;

dcterms:title "OSLC Requirements Management (RM) Vocabulary" ;

declaring the requirement resource type

oslc_rm:Requirement a rdfs:Class ;

rdfs:comment "Statement of need." ;

rdfs:isDefinedBy oslc_rm: ;

rdfs:label "Requirement" .

declaring an RM domain property

oslc_rm:specifies a rdf:Property ;

rdfs:comment "Expresses a specification relationship between entities, where the subject entity

specifies the object entity. For example, a model element specifies a requirement." ;

rdfs:isDefinedBy oslc_rm: ;

rdfs:label "specifies" .

These are rdfs metdata
properties of the class,
not of instances of the
class.

Incose IS 2023 41

OSLC Resource Shapes

• Constraining the properties of domain resources
- Meaning/purpose/usage of a property
- Which properties are mandatory, which optional
- Permitted values of a property

• Server uses oslc:ResourceShape to provide this information
- Defined by OSLC Core Resource Shape
- Constraints on the shape of a resource and those to which it is linked; how to associate a

shape with a resource

Incose IS 2023 42

OSLC Vocabularies curate properties from other vocabularies

• Example: Dublin Core Metadata Initiative (DCMI)
- Defines a set of properties for describing documents.

• https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

dcterms:creator

dcterms:title

dcterms:format

dcterms:date

dcterms:publisher

dcterms:subject

Incose IS 2023 43

Anatomy of OSLC

OSLC Core Specification

OSLC Change Mgt
Specification

OSLC Requirements
Specification

OSLC Domain X
Specification

Core: Specifies the primary integration
techniques for integrating lifecycle tools
– the standard rules and patterns for
using HTTP and RDF that all the domain
workgroups must adopt in their
specifications

Domain:

1. Defines integration scenarios for a
given lifecycle topic

2. Specifies a common vocabulary for
the lifecycle artifacts needed to
support the scenarios.

How

W
h
at

Example:

• The Core specification describes Delegated UIs and Creation Factories and states
that OSLC service providers MAY provide them.

• The Change Management specification states that CM service providers MUST
provide them.

Incose IS 2023 44

OSLC providers (domain tools)

OSLC Resource

OSLC Service

manages

OSLC Service
Provider

example: project, module, …

example: Change Management
capability

example: work item (bug,
defect, enhancement request)

provides an
implementation of

The central organizing concept of OSLC.

• Reflects the tool’s containers or partitions

• Enables tools to expose resources

• Provides access to services (enabling
consumers to navigate resources, and

create new ones)

Set of capabilities that enable a web client to
create, retrieve, update and delete resources

Managed by an OSLC Service, may have
properties and may link to other resources
including those provided by other OSLC

Services.

OSLC Service
Provider catalog

• Allows for the discovery of the service
provider set(s).

• They help to simplify the configuration of
tools (ex. OAuthConfiguration). example: IBM Engineering

Workflow Manager (RTC)
provides

Incose IS 2023 45

OSLC Core services

OSLC defines standard rules and patterns for integrating lifecycle
tools

1. Discovery of
capabilities

5. Delegated UI
for Creation

2. HTTP C.R.U.D.
for resources

4. Delegated UI
for Selection

6. UI Previews for
Resource Links

3. Querying for
resources

Incose IS 2023 46

Starting from the catalog you can
discover services and their
capabilities. This is a common
pattern in OSLC.

OSLC capabilities:

Delegated UI Dialog allows you
to create or find resources using
a UI provided by the OSLC tool

Creation Factory allows you to
create resources
programmatically

Query Capability allows you to
query for resources

1 - Discovery of capabilities

Incose IS 2023 47

2a. HTTP C.R.U.D - Resource Retrieval (Request)

• Use HTTP GET and standard HTTP content negotiation
- Client uses HTTP Accept request header to specify desired resource formats

• Use standard content(MIME) types

• Partial representations can be requested via HTTP URL key=value
pair as ?oslc.properties=
- Allows for minimal retrieval of properties

- Get Defect 123 (all properties)

- Get Defect 123 (just title and status)

Accept: application/json, application/xml

GET http://bugs/123

GET http://bugs/123?oslc.properties=dcterms:title,oslc_cm:status

Incose IS 2023 48

2b. Resource Creation (Create)

• Create a resource using HTTP POST
- URI for doing the POST is defined in the

oslc:ServiceProvider in the oslc:creationFactory
service

• Response is a 201-Created with Location HTTP
header indicating URI for resource

• Request may be rejected for any number of
reasons
- Insufficient permissions

- Missing required values

- Invalid data choices

- ...and … and ...

• Valid resource formats for creation may be
defined by domain specification, or by service
providers via a resource shape associated with
creation factory

Incose IS 2023 49

2c. Resource Modification (Update)

• Use HTTP GET to get resource
properties to be updated
- You’ll get an ETag back

• Change only the property values
you need to change
- Clients must preserve unknown

content

• Use HTTP PUT to send updated
resource
- Use If-Match HTTP request header

with ETag, services may reject
your request without it

- HTTP PUT will completely replace
the resource representation

Incose IS 2023 50

2d. HTTP C.R.U.D - Resource Deletion (Delete)

• Use HTTP DELETE on the resource identifier

• May not be allowed

• Response usually:
- 200-OK

- 204-No-Content

- 400-Bad-Request

- 403-Forbidden

Incose IS 2023 51

3 Querying for resources

• Query capability has base URI

• Clients form query URI and HTTP GET
the results

• OSLC services MAY support OSLC Query
Syntax
- http://open-

services.net/bin/view/Main/OSLCCoreSpecQu
ery

Incose IS 2023 52

3. Query syntax overview
• Filter results by appending “oslc.where=” with query clause to query base URI

• Only boolean operation allowed is “and” which represents conjunction
- “or” for disjunction is not defined in the interests of keeping the syntax simple.

• Retrieve just what you want with “oslc.select=”

• Defined ordering using “oslc.orderBy=”

• Full-text search via “oslc.searchTerms=”

Comparison Operators

= test for equality

!= test for inequality

< test less-than

> test greater-than

<= test less-than or equal

>= test greater-than or equal

'in' operator:

Test for equality to any of the values
in a list. The list is a comma-
separated sequence of values,
enclosed in square brackets: in
[“high”,”critical”]

Incose IS 2023 53

3. Query examples
• Find high severity bugs created after April fools day

• Find bugs related to test case 31459

• Find all bugs created by John Smith
http://example.com/bugs?oslc.where=

dcterms:creator{

foaf:givenName="John" and foaf:familyName="Smith"}

http://example.com/bugs?oslc.prefix=qm=

<http://qm.example.com/ns>&

oslc.where=qm:testcase=<http://example.com/tests/31459>

http://example.com/bugs?oslc.where=

cm:severity="high" and dcterms:created>"2023-04-01"

2 provider
returns a UI
iFrame woth
select/create UI

1. Client application
initiates a new link
to a provider app

3. Selection
made

4. Click OK.
Sends message
(link+label) to
parent window

4. Delegated UI for Selection & Creation
• Delegated UI service renders UI of a

provider application within a client
application to enable easy
selection/creation of resources from/by
the provider

• Example: a test application needs to
associate a test execution with a defect

• A delegated select/create UI is obtained
from the defects application (CM)

• The tester looks for a matching defect
using the UI provisions

• If no defect found, the tester creates a
new defect via the delegated UI

• Ultimately a defect resource URI is
returned to the test application

• Test application stores the link

Incose IS 2023 55

5. Delegated UI for Selection & Creation- Demo

The scenario: In Polarion, the user wants
to link a Requirement to a Task in IBM
EWM and also to Jira

• Alternatives:
1. JIRA Connector: Import/export of

JIRA artefacts into Polarion

2. OSLC Friendship: Interoperate with
JIRA OSLC service(s) that allow user
to select/create a Task – from within
Polarion.

OSLC
Consumer

OSLC
Provider

Link to video

IBM EWM

Incose IS 2023 56

6. Resource Preview

Hover over link

•Obtaining information about a linked
resource by a client application

• The owning application determines what
and how to visualize a preview for its
resources

•Example: A requirements has a link to a
story in a CM application. Hovering on the
link brings up a preview of the story

•Obtaining a preview page is done by
performing a get on the resource with a
HTML MIME-type

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 57

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Incose IS 2023 58

OSLC Domain Specifications

• Core & Common
- Configuration Management
- Tracked Resource Set
- Reporting

• Application Lifecycle Management (ALM)
- Change Management
- Quality Management
- Requirements Management
- Asset Management
- Architecture Management
- Automation

• (Software) Project Management
- Estimation and Reporting

• Product Lifecycle Management (PLM)
- ALM-PLM Interoperability

OSLC domain vocabularies

Change
Management

Configuration
Management

OSLC Core

Requirements
Management

Architecture
Management

Quality
Management

Asset
Management

Product
Structure*

Automation

JEK0

Slide 58

JEK0 Some of the domains on the list are obsolete.

Instead, why not mention the ongoing ones?
Jad El-Khoury, 2023-06-12T11:34:51.828

Standard OSLC domain links (partial)
• OSLC vocabularies

specify domain link types
as RDF properties

• A link type may constrain
its source and target
resource types

• Link types may specify
labels and inverse labels

.IncoseIS 2023 59

Requirement1

TestCase1 ModelElement1

Workitem1

validatesRequirement

validatedBy

implements

implementedBy

Workitem2

tracks

trackedBy

Requirement2

affects

affectedBy

refinedBy

refine

Requirement3

elaborates

elaboratedBy

satisfies

satisfiedBy

testsChangeRequest

trace

TestCase1

validatedBy

Incose IS 2023 60

Requirements Management domain

• Defines integration protocols for activities involving requirements, requirements collections, and
traceability relationships

• Requirements Management v2.1 is an OASIS Standard
- https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-spec.html

• Requirement

- A datum that can be represented as an oslc_rm:Requirement
- Loosely, “A statement of need”

- OSLC is not prescriptive of semantics
• Example: An IBM DOORS Next textual artefact has an OSLC RM representation

• Low bar for servers to expose wide variety of data

• Requirement Collection

- A datum that can be represented as an oslc_rm:RequirementCollection
- A collection of zero or more requirements.

- OSLC is not prescriptive of semantics
• Examples: IBM DOORS Next module (or “specification”) has such a representation

JEK0

Slide 60

JEK0 Datum?
Jad El-Khoury, 2023-06-12T11:35:51.910

Incose IS 2023 61

Example: Requirement resource
http://openservices.net/ns/rm#Requirement
• Some properties are from the oslc_rm shape (green)

- Eg dcterms:title property expresses a textual requirement, “Sample statement of
need”

- Vocabulary defined by Dublin Core

• Other vocabularies also used (black)
- Eg process:projectArea property from jazz.net (see http://jazz.net/ns/process#)

• All properties are described by the oslc_core:instanceShape

• Distinction:
- Vocabulary defines the term

• Eg dcterms:identifier by Dublin Core

- Shape describes usage/meaning of that term in the context of the resource
• Eg That a dcterms:identifier represents the requirement’s identifier in the RM application

Incose IS 2023 62

Example: Requirement resource in RDF

https://example.com/rm/resources/TX_kbvAUOA2Ee2EwpnLIAuuAQ
a <http://open-services.net/ns/rm#Requirement> ;
dcterms:modified "2023-04-21T12:20:49.637Z"^^xsd:dateTime ;
oslc_core:instanceShape <https://example.com/rm/types/OT_BW8s8clCEe2jQ6SfLQN4Jw> ;
process:projectArea <https://example.com/rm/process/project-areas/_-APP0MlBEe2jQ6SfLQN4Jw> ;
oslc_config:component <https://example.com/rm/cm/component/_-DFvgMlBEe2jQ6SfLQN4Jw> ;
dcterms:title "Sample requirement"^^rdf:XMLLiteral ;
oslc_core:serviceProvider <https://example.com/rm/oslc_rm/_-APP0MlBEe2jQ6SfLQN4Jw/services.xml> ;
dcterms:identifier "9"^^xsd:string ;
dcterms:created "2023-04-21T12:20:49.637Z"^^xsd:dateTime ;
dnext_nav:parent <https://example.com/rm/folders/FR_-FGhsclBEe2jQ6SfLQN4Jw> ;

dcterms:creator <https://example.com/jts/users/img> ;
dcterms:description ""^^rdf:XMLLiteral ;
jazz_acp:accessControl <https://example.com/rm/accessControl/_-APP0MlBEe2jQ6SfLQN4Jw> ;
dcterms:contributor <https://example.com/jts/users/img> .

Incose IS 2023 63

Requirements Management shapes
• See https://docs.oasis-open-projects.org/oslc-op/rm/v2.1/os/requirements-management-

shapes.html for RM 2.1 Requirement shape

Incose IS 2023 64

RM Requirement Shape – RDF format
<https://example.com/types/OT_BW8s8clCEe2jQ6SfLQN4Jw>
a <http://open-services.net/ns/core#ResourceShape> ;
dcterms:title "requirement"^^rdf:XMLLiteral ;
oslc_core:serviceProvider <https://example.com/oslc_rm/_-APP0MlBEe2jQ6SfLQN4Jw/services.xml> ;
oslc_config:component <https://example.com/cm/component/_-DFvgMlBEe2jQ6SfLQN4Jw> ;
acc:accessContext <https://example.com/acclist#_-APP0MlBEe2jQ6SfLQN4Jw> ;
oslc_core:describes <http://open-services.net/ns/rm#Requirement>,

<http://open-services.net/ns/rm#RequirementCollection> ;

oslc_core:property [
a oslc_core:Property ;
oslc_core:range <http://open-services.net/ns/rm#RequirementCollection>,

oslc_core:Resource,
<http://open-services.net/ns/rm#Requirement> ;

oslc_core:propertyDefinition <http://www.ibm.com/xmlns/rdm/types/Link> ;
dcterms:title "Link To"^^rdf:XMLLiteral ;
oslc_core:occurs oslc_core:Zero-or-many ;
dcterms:description "Tracks a general relationship between Requirements Management artifacts."^^rdf:XMLLiteral ;
oslc_core:name "Link" ;
oslc_core:representation oslc_core:Reference ;
oslc_core:valueType oslc_core:Resource

], cont…

• “Link To” traceability link
• Zero-or-many
• Target of link is either a Requirement, Collection or any OSLC Core Resource

JEK0

Slide 64

JEK0 You showed another example a few slides beforehand. Keep this one, but remove the previous one?
Jad El-Khoury, 2023-06-12T11:37:01.505

Incose IS 2023 65

Custom traceability properties

• User defines a traceability relationship in their application, as part of a curated
custom vocabulary

• Application surfaces this user-defined property on OSLC API

- RDFS descriptions of the vocabulary

- ResourceShapes reflecting its usage

• Clients discover these custom properties via ServiceProvider and
ResourceShape

- Supports generic tooling (query builders, explorers etc.)

- Supports better user experience (labelling of data, reports etc.)

Incose IS 2023 66

Example: specifying a custom traceability property

ResourceShape property:
a oslc_core:Property ;
dc:title "satisfies"^^rdf:XMLLiteral ;
oslc_core:propertyDefinition <http://example.com/ns/satisfaction> ;
oslc_core:range oslc_core:Resource,

<http://open-services.net/ns/rm#Requirement>,
<http://open-services.net/ns/rm#RequirementCollection> ;

oslc_core:occurs oslc_core:Zero-or-many ;
oslc_core:valueType oslc_core:Resource ;
oslc_core:representation oslc_core:Reference

RDFS description of the vocabulary term:
< http://example.com/ns/satisfaction >

a rdf:Property ;
oslc_config:component <https://example.com/rm/cm/component/_-DFvgMlBEe2jQ6SfLQN4Jw> ;
oslc_core:serviceProvider <https://example.com/rm/oslc_rm/_-APP0MlBEe2jQ6SfLQN4Jw/services.xml> ;
owl:sameAs <http://example.com/ns/satisfaction> ;
rdfs:label "satisfies" ;
oslc_core:inverseLabel "satisfied by" .

Incose IS 2023 67

Example: Representation of requirement with a trace link

<https://example.com/rm/resources/TX_kbvAUOA2Ee2EwpnLIAuuAQ>
a oslc_rm:Requirement ;
dc:identifier "9"^^xsd:string ;
dc:created "2023-04-21T12:20:49.637Z"^^xsd:dateTime ;
dc:creator <https://example.com/jts/users/img> ;
dc:description ""^^rdf:XMLLiteral ;
dc:modified "2023-04-21T12:20:49.637Z"^^xsd:dateTime ;
oslc_core:instanceShape

<https://example.com/rm/types/OT_BW8s8clCEe2jQ6SfLQN4Jw> ;
oslc_config:component <https://example.com/rm/cm/component/_-

DFvgMlBEe2jQ6SfLQN4Jw> ;
dc:title "Sample requirement"^^rdf:XMLLiteral ;
oslc_core:serviceProvider <https://example.com/rm/oslc_rm/_-

APP0MlBEe2jQ6SfLQN4Jw/services.xml> ;
oslc_rm:satisfies

<https://example.com/rm/resources/TX_05DFwM67Ee2tvoEyrwG3bQ> ;
dc:contributor <https://example.com/jts/users/img> .

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 68

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Incose IS 2023 69

OSLC Configuration management : Key concepts

• Standardizing referential and publishing of versioned engineering data by domain
providers

• Orchestrating multiple domain configurations into global contexts with global
configurations

• Configuration providers: manage versioned data

- E.g.: requirements, models, source-code, CAD data

• Concept resource: a referential identity of a resource that has versions

- E.g. requirement#27

• Version resource: a concrete state of a concept resource
- E.g. requirement#27 version 5

70

OSLC domain configurations (“local configurations”)
• Components are collections of resources - for example – a model

• Configuration determines the version for each artifact in a component

• Resource versions can be shared across configurations

• Stream is a mutable configuration; Baseline is an immutable configuration

70

R5.2

R2.1

R4.1

UAV [platform]

R3.1
R1.1

R5.3

R2.1

R4.2

UAV [Customer A]

R3.1
R1.1

R5.3

R2.1

R4.2

UAV[Customer B]

R3.1
R1.1

R6.1 R7.1

Common element

Modified element

Added element

Versioned
resources

Configurations
(local)

Streams

Baselines

Incose IS 2023 7171

• In OSLC we use conceptual links to maintain validity of the link
in case of version updates using link resolution

• Example: Two configurations of customer_requirements

A1 and A3 were modified in baseline2

• Conceptual links refer to concept resources, e.g
- L1 refers to A1

- L2 refers to A3

• In the context of [baseline1]
- L1 resolves to A1.1

- L2 resolves to A3.1

• In the context of [baseline 2]
- L1 resolves to A1.2

- L2 resolves to A3.2

• Changing to context from [baseline1] to [baseline2] does not
require any change to the tracing requirements A5 and A4

Conceptual Links and Link resolution

71

Conceptual Links persist when versions of objects are
replaced in a configuration

L1

A5.1

A2.1

A4.1

Customer_requirements[baseline1]

A3.1
A1.1

A5.2

A2.1

A4.2

Customer_requirements[baseline 2]

A3.2
A1.2

L1 L2

L1 L2

Version
change

RDF representation of versioned resources with RDF graphs
 RDF graphs are containers of RDF

statements
 In presence of multiple versions of the

same resource, the version resource
graph scopes the relevant statements
of a specific version

 In this example requirementA has
two versions v1,v2, and
requirementB has one version v1

 Each version resource has two sets of
triples enclosed by the graph:

 Version triples
 Resource triples

 Domain providers may implement
graph scoping in different ways

Graph
requirementA-V1

Graph
requirementA-V2

Graph
requirementB-V1

Global configuration management
Orchestrating configurations across multiple providers

• Consistent evolution of data across engineering
disciplines: common baselining

• A breakdown structure across the entire design space

• Manage engineering assets across variants and programs

• Reuse all engineering assets from the platform:
requirements, design, implementation, test

• Manage changes across variants and programs

Cfgm

A Global Configuration across domain providers

UAV Baseline 1

UAV
Requirement

UAV System
model

UAV Mechanical
Model

UAV Source
Code

Baseline 2 Baseline 3

Baseline 2

Baseline 3

Example: Hierarchical configuration of the “Aviary” system

Component reuse across variant streams

74

• Enabling artifacts and
component reuse across
concurrent variants and
programs using GCM streams

• Controlling undesired
interference across variants

• Propagate changes across
variants and programs

TestDesignRequirements Code

Aviary “base”

Aviary “payload”

Aviary Variant 2

Aviary Variant 3

Time

Example: Aviary Variants

Systems engineering artifact reuse across programs and
variants

• Federated configuration
management enables baselining and
reuse of configuration items across
all lifecycle disciplines

• Configuration items are organized in
hierarchical configurations

• Configuration items can have
variants to realize variability across
programs and products

• Configuration items can be reused
across programs and products

Aviary Base

Aviary
w
Payload

1 2 3 40

10

Aviry Base

Hummingbird B

avionics 1.1Rotorsv3.1

B Watcher 1

Variant

Hummingbird b
1 2 30

10
Hummingbird P

Avionics v1

Avionics v2

1 2 30

10

Aviary Payload

Hummingbird P

Avionics 2.1Rotors v3.1

B watcher 1

Commonl

Example: component reuse across a UAV system
(Aviary) variants

Global configurations conceptual domain model

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 77

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Incose IS 2023 78

Tracked Resource Set

• Tracked Resource Set v3.0 is an OASIS Project Specification

- See https://docs.oasis-open-projects.org/oslc-op/trs/v3.0/tracked-resource-set.html

• Need: Digital Thread Central Reporting and Analysis

- Reporting

- Impact & Trace analyses

- Metrics

• Data is replicated to central repository

- TRS is the OSLC mechanism for replication from domain application to this central
repository

• Central repository provides query endpoint

- Can be SPARQL, SQL etc. (currently specified by OSLC)

Incose IS 2023 79

OSLC Tracked Resource Set

Requirements
Management

Test
Management

Architecture &
Design
(MBSE)

Traceability/Impact
Analysis (ENI)

Reporting (JRS, Pub)

Metrics (JRS)

Lifecycle
Graph
(LQE)

Electrical
Design

Mechanical
Design

Agile SW
Apps

IBM EWM

Domain TRS

Result sets

Central repository
(a TRS client)

Visualization and export Tools

Incose IS 2023 80

Tracked Resource Set

• Provides
- Means to enumerate the set of resources in a server
- Means to monitor changes over time to this set of resources
- Protocol characteristics

• TRS clients can join anytime and catch up

• Access controls imposed by each TRS server

• Uses OSLC representations

• Robust to arbitrarily large sets of resources

• Changes processed asynchronously

• Usage: Digital Thread reporting/analysis services is a TRS client
- Replicate these data in a form optimized for reporting into a single reporting

database
- Track and react to resource changes in order to maintain freshness in that single

database
- Expose visualization services over that single database

Incose IS 2023 81

Tracked Resource Set and its clients

• TRS contains all OSLC resources that are to be exposed to TRS
client

• Generally, a server has more than one TRS
- Eg resource category: Eg requirements and process definitions

- Eg TRS client responsibility
• “all domain content” or “only traceability data”

• A TRS client is typically the client of multiple TRS servers
- Responsible for replicating resources from many servers

Incose IS 2023 82

Tracked Resource Set

• Logical set comprises two parts
- Base: a set of resources that belong to the set at a fixed time t0

- Change Log: a record of all changes made to the logical set since t0

• TRS has representations of both base and change log
- Base and change log are shared across all TRS clients

• A TRS client first reads the entire base, then polls the change log for
changes
- Changes are ordered and have identity

- Enables TRS client to consume all changes exactly once
• Creation -> Fetches new resource and inserts it

• Modification -> Fetches latest resource representation and updates it

• Deletion -> Removes current resource

- Central repository is eventually consistent with all of the contributing domain servers

Incose IS 2023 83

TRS base – tracking starting point

• Example of a base response
<ldp:DirectContainer rdf:about=".../rm/trs2/base">

<ldp:member rdf:resource=".../rm/workflow/attrdef/_-APP0MlBEe2jQ6SfLQN4Jw/DefaultWorkflow"/>
<ldp:member rdf:resource=".../rm/versionedResources/TX_cWKscMlCEe2jQ6SfLQN4Jw"/>
<ldp:member rdf:resource=".../rm/cm/baseline/_QsUUcMlCEe2jQ6SfLQN4Jw"/>
<ldp:member rdf:resource=".../rm/versionedShapes/LT_YAaNIclCEe2jQ6SfLQN4Jw"/>
...

• Contains all resources appropriate to the scope of the TRS
ResourceShapes
Vocabulary terms
Domain resources (here, OSLC RM resources

Incose IS 2023 84

Example: TRS change log
Resource: http://cm1.example.com/trackedResourceSet
@prefix trs: <http://open-services.net/ns/core/trs#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://cm1.example.com/trackedResourceSet>
a trs:TrackedResourceSet ;

trs:base <http://cm1.example.com/baseResources/> ;

trs:changeLog [
a trs:ChangeLog ;
trs:change <urn:example:6e8bc430:cm1.example.com:2010-10-27T17:39:33.000Z:103> ;
trs:change <urn:example:6e8bc430:cm1.example.com:2010-10-27T17:39:32.000Z:102> ;
trs:change <urn:example:6e8bc430:cm1.example.com:2010-10-27T17:39:31.000Z:101> .

] .
<urn:example:6e8bc430:cm1.example.com:2010-10-27T17:39:33.000Z:103>

a trs:Creation ;
trs:changed <http://cm1.example.com/bugs/23> ;
trs:order "103"^^xsd:integer .

<urn:example:6e8bc430:cm1.example.com:2010-10-27T17:39:32.000Z:102>
a trs:Modification ;
trs:changed <http://cm1.example.com/bugs/22> ;
trs:order "102"^^xsd:integer .

<urn:example:6e8bc430:cm1.example.com:2010-10-27T17:39:31.000Z:101>
a trs:Deletion ;
trs:changed <http://cm1.example.com/bugs/21> ;
trs:order "101"^^xsd:integer .

Incose IS 2023 85

Lifecycle query

• TRS client can expose query across all lifecycle resources
- CQRS pattern

• Experience shows that this architecture scales better and is easier to manage than federated query

- Eg IBM ELM LQE exposes SPARQL endpoint

- Eg IBM ELM LDX exposes services to discover trace links between OSLC
resources

• Eg TRS client can trigger workflow transitions/alerts when a domain
resource changes

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 86

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

Incose IS 2023 87

An Eclipse project aimed at accelerating the development of OSLC-
compliant solutions.

• Supports Java developers

• Lyo relies on the Eclipse foundation’s governance and hosting support

- Lyo is NOT dependent on the use of the Eclipse IDE

• Licensing

- Open-source, under the Eclipse Public License (EPL)

- Commercial-friendly license

Eclipse Lyo

http://eclipse.org/lyo

Example: Integration of a “foreign” design tool (AM)

OSLC AM &
TRS
Adapter

OSLC AM

Tool Specific API

Data Transformation
(internal storage to RDF)

Conversion of API Calls

Preview UI
Show a user in-context
information when the user's
mouse hovers over the link.

Selection UI
Allow a user to pick a
resource that is managed by
an OSLC Service

searchChgReq*

Results
116
168

ChgReq-3
ChgReq-4

000168-
ChgReq-4
creator=John
description= …..

204 ChgReq-5

ChgReq-1

Foreign tool
(Non-OSLC Tool)

OSLC

Lifecycle Index

OSLC TRS

Data Publication
(via TRS spec for
indexing)

Tracked Resource Set
+ Change Log

Linked data
Association of CM resources

OSLC RM
Tool

OSLC RMAdapter provides AM OSLC and TRS
Adapter consumes

Incose IS 2023 89

Lyo Features - An Overview

OSLC4J SDK

Lyo Store

OSLC4J
Core

JAX-RS
ProviderClient

Query

Lyo
Validation
(experimental)

Lyo Designer

Adaptor
GeneratorModeler

Samples,
tutorials and

documentation

Reference
implementations

of OSLC
specificationsSDK

Applications

Libraries TRS Server

Eclipse/Lyo Designer

Model-Driven OSLC development
• Graphical notation for Linked Data and

OSLC (DSL)
• Generates OSLC server Java code

Complete lifecycle support
• Specifications
• Implementation
• Adaptor testing
• Integration testing
• Automatic code & test generation

Support for multiple perspectives
• Tool-Data ownership
• Domain-data specifications
• Adaptor implementation model

A modelling environment to develop OSLC domain tools

JEK0

Slide 90

JEK0 These are some very very old pictures.
Will you integrate the new slides I shared?
Jad El-Khoury, 2023-06-12T11:41:12.304

Lyo in use

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 91

• The eclipse Lyo project

• Lynx designer as an example extension of Lyo
– https://youtu.be/Quh8T6SvGuA

Working with LYO designer

1. Develop the Domain Specification(s)
a. Model the Domain Specification(s)

b. Generate corresponding Java source code

2. Develop the OSLC Server
a. Model the server

b. Generate implementation

c. Develop code to connect to backend application

d. Fine tune generated code – if necessary

3. Deploy & run

4. Repeat 1-3 (Lyo generation supports incremental development)

1a. Model Domain specifications

• You can import existing models of the
OSLC Domain Specifications
– https://github.com/eclipse/lyo

• You can also define your own
extensions, or specific domain
specifications.

1b - Generating code from Domain specifications

Java classes corresponding to the modelled OSLC resources

- All necessary attributes to create & handle instances of OSLC Resources.

- OSLC-annotations define the mapping between Java instances and RDF resources.

- OSLC4J can marshal/unmarshal such instances to/from any RDF-format

@OslcNamespace(Oslc_rmDomainConstants.REQUIREMENT_NAMESPACE)

@OslcName(Oslc_rmDomainConstants.REQUIREMENT_LOCALNAME)

@OslcResourceShape(..., describes = Oslc_rmDomainConstants.REQUIREMENT_TYPE)

public class Requirement extends AbstractResource {

@OslcName("identifier")

@OslcPropertyDefinition(DctermsDomainConstants.DUBLIN_CORE_NAMSPACE + "identifier")

@OslcOccurs(Occurs.ExactlyOne)

@OslcValueType(ValueType.String)

@OslcReadOnly(false)

public String getIdentifier()

{

return identifier;

}

...

}

2a. Model OSLC Server

• Specify
a. Discovery capabilities: Catalog &

Service Providers, Services

b. Desired capabilities: Creation
Factories, Delegated UIs, Query
capabilities.

c. Resource Operations: Read,
Update, Delete

d. Authentication

2b. Generate OSLC Server

• Produce an almost-complete
OSLC4J-compliant running
implementation.

• OSLC4J-Annotated Java classes to
handle

– All OSLC service capabilities (complete
from end-user request to RDF-response)

– Discovery capabilities
– Authentication
– Basic JSP pages for the html-

representation of the dialogs & previews
– Swagger (OpenAPI) support

@OslcService(Oslc_rmDomainConstants.REQUIREMENTS_DOMAIN)
@Path("requirements")
public class ReqWebService {

....
@OslcQueryCapability (

@GET
@Path("query")
@Produces({OslcMediaType.APPLICATION_RDF_XML, ...})
public Requirement[] queryReq(@QueryParam("where") String

where, ...) {
...;
return resources;

}

@GET
@Path("{requirementId}")
@Produces({OslcMediaType.APPLICATION_JSON_LD, ...})
public Requirement getRequirement(... final String

requirementId) {
Requirement aReq = ...;
return aReq;

}

@OslcCreationFactory (...)
@POST
@Path("create")
public Response createRequirement(...) {

...
}

}

2c. Connect to backend Application

• Develop code to connect to backend application, and
obtain necessary data to handle each OSLC operation
– Search items

– Get/Update/Delete/Create

• Supports incremental development
– Any manual code changes are preserved upon changes to the model,

and subsequent code regeneration.

Agenda

1. OSLC goals and digital threads use cases
2. The foundations: W3C linked data
3. Service oriented RESTful HTTP based APIs
4. OSLC core services - discovery, Create/Read/Update/Delete (CRUD), OSLC Query, resource

selection, resource preview
5. OSLC domains and core lifecycle ontology
6. OSLC configuration management
7. OSLC TRS (track resource set): What is the purpose of TRS, how it works, and how TRS

supports global analytics
8. Creating OSLC adapters - Eclipse LYO and others
9. Putting it all together: an OSLC taking a tour of an OSLC implementation using a concrete

system (UAV) and its cross-domain integrations

JEK0

Slide 98

JEK0 This new agenda point does not exist in the previous agenda slides.
Jad El-Khoury, 2023-06-12T11:39:38.689

The Aviary System

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 99

The Aviary system domains described by a global configuration

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 100

A digital thread across Aviary originated in a Range change request

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 101

Example: Selection/Creation service(1) between DOORS NG and Jira

102IBM Watson IoT / © 2018 IBM Corporation

Jira delegated
UI for selection

Visualizing and creating links in a domain tool –
requirements to model elements

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 103

Linking from Jira to Doors NG with a requirement preview

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 104

Dashbords with traceability views to Jira stories

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 105

Comparing two Aviary digital threads configurations
focusing on tests to requirements traceability

15-20 July - 2023 www.incose.org/symp2023 #INCOSEIS 106

Thank You!

