Systems Engineering Tools Integration and Interoperability using OSLC in the SPRINT project

Andreas Keis, Parham Vasaiely (EADS Innovation Works, Newport)
Uri Shani (IBM Israel Science and Technology Ltd., Haifa)

2nd February 2012
EADS Divisions – The Four Firm Walls on which EADS is Built

AIRBUS
- Globally leading aircraft manufacturer
- Since 2000, Airbus commercial deliveries grew by 60%
- Backlog more than doubled in one decade (now equaling 6 years of production)

ASTRIUM
- Europe’s leading space provider
- Largest space employer in France, Germany, Spain and the UK
- Having increased its revenues 2x and EBIT 4x since the year 2000

EUROCOPTER
- Leading helicopter manufacturer
- Accounting for 1/3 of the global helicopter fleet
- Having delivered about 4,000 helicopters throughout the past decade

CASSIDIAN
- Worldwide leader in security systems and Europe’s leading UAV provider
- Over 234 Eurofighter aircraft delivered (as of Sept. 2010)
- Having more than doubled its EBIT & Return on Sales over the last 5 years
EADS Innovation Works (EADS IW)

An international network of research centres working on EADS priorities

EADS Innovation Works is responsible at EADS Group level for identifying new technologies that:

• Create value and develop them up to TRL 3
• Guaranteeing the technical innovation potential for EADS in TRL 1-6

IW Geographical locations

Staff in France and Germany: 510 people
IW UK: 120 people
IW Spain: Target = 75 people
IW Singapore: Target = 30 people
The IBM Research division is one of the world's largest IT research organization with more than 3,000 scientists and engineers working at 11 labs in 9 countries. http://www.research.ibm.com/
IBM Haifa Research Lab, Israel

The IBM Scientific Center in Haifa opened in 1972, since then the lab has conducted decades of research that have proved vital to IBM’s success. The lab is the largest of the five research laboratories located outside of the United States.

The Software and Services department which participates in the SPRINT project, develops software technologies to exploit advances in computing infrastructure that benefit both traditional IT businesses as well as the system engineering and the embedded software development space.
SPRINT – Software Platform for Integration of Engineering and Things

- FP7 Project (ICT-2009.1.3: Internet of Things and Enterprise environments)
- Project Website: www.sprint-iot.eu
- Launched October 2010
- Duration 36 months
- Budget: 3.46 Mio EUR

Our Roles:
- Andreas Keis: Project Coordinator
- Parham Vasaiely: Project Manager
- Uri Shani: Technical Manager

<table>
<thead>
<tr>
<th>Partner</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>EADS UK (Coordinator)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Israel Aerospace Industries</td>
<td>Israel</td>
</tr>
<tr>
<td>IBM Haifa Research</td>
<td>Israel</td>
</tr>
<tr>
<td>FRAUNHOFER FOKUS</td>
<td>Germany</td>
</tr>
<tr>
<td>Mathcore</td>
<td>Sweden</td>
</tr>
<tr>
<td>ALES</td>
<td>Italy</td>
</tr>
<tr>
<td>Elvior</td>
<td>Estonia</td>
</tr>
</tbody>
</table>
SPRINT Objectives and Challenges

SPRINT Objective

Development of next generation design methods and tool integration technologies for the design and deployment of complex systems developed in a geographically distributed environment by introducing new concepts related to the Internet-of-Things paradigm.

SPRINT Challenges

- Geographically distributes collaborative projects
- Multi tool-vendor environment
- Design data isolation to support a multi-corporate development ecosystem
- Multiple design methodologies
- Legacy and green-field components
- Geographically distributed simulation and HIL testing
The next generation of Systems Engineering: Development over the Internet

In the IoT everything is a Resource

SPRINT uses the IoT approach to:
- Identify Resources
- Configure Devices
- Setup Simulations
- Coordinate Activities

SPRINT does not address:
- Real-time simulation problems
- Common modeling language problems
SPRINT Desired Goal: Break existing design silos

From this

To this
From Point-2-Point to “Hub and Spoke”
The SPRINT Collaboration Platform Architecture

SPRINT Platform

Interoperability Specification (IOS)

REST Architecture
Common IOS Principles

TCP/IP
HTTP
W3C LD
XML

OSLC
RDF
RDF/XML
Additional or specific concepts
OWL

Applications and Services

T1 S2 S5 T3 S4

OSLC-AM

Additional Concepts

Methods
Processes
...
Focus of this presentation

This presentation will focus on the tools interoperability problem which may be solved with:

Part 1: OSLC as common interoperability

Part 2: Semantic Mediation (SM) as additional concept for interoperability

Part 3: Collaboration Environments as possible compositions of integration platforms.
Part 1: OSLC as common interoperability

Role of OSLC in the Platform Architecture

Tool integration approach based on interoperability technologies proposed by the Open Services for Lifecycle Collaboration (OSLC).

These standard internet technologies allows the sustainability and acceptance of the solution in the future.

The OSLC-AM is used to specify semantics for resources.
Part 1: OSLC as common interoperability

Tools Interoperability in a nutshell

Software Tool/Application

MathCore
MathModelica

MathWorks
MATLAB
Simulink

Modelling Language

Modelica

MATLAB

OSLC

Read/Write

SysML

DoDAF

IBM
Rational
Rhapsody

IBM
System
Architect

Common Interoperability

RDF
Part 1: OSLC as common interoperability

► OSLC Architecture Management Domain

The OSLC-AM domains give the minimum common vocabulary to allow architecture modeling and design tools not only the exchange of information but their understanding.

- RHP
 - Proprietary Language: SysML
 - Common Syntax (RDF+)

- MM
 - Proprietary Language: Modelica
 - Common Syntax (RDF+)

- SA
 - Proprietary Language: DoDAF
 - Common Syntax (RDF+)

The OSLC Adapter using Lyo SDK for Tool Integration Platform using Lyo SDK.
Part 2: SM as additional concept for interoperability

Role of SM in the Platform Architecture

In many cases different architecture tools or languages have additional concepts (types) which are not covered by the OSLC-AM.

Semantic Mediation allows the composition of semantic rules in OWL.

The standard internet technologies are still responsible for the communication and data exchange format.
Part 2: SM as additional concept for interoperability

► What is Semantic Mediation?

To reach a model in a destination language based on a source language one can use the following methods:

Translation: Mapping of elements from the source to the destination language.
- A new model will be created.

Transformation: Changing of element types from the source to the destination language.
- The existing model will be transformed.

Semantic Mediation: Identifying similar types of both languages based on an ontology/semantic rule set.
- A new model will be composed.
Part 2: SM as additional concept for interoperability

The SM approach and its elements

By defining semantic rules, the system can identify resources from one language A to be semantically same as an element from language B.
Part 3: Collaborative Environment (SPRINT Year 1)
Part 3: Distributed Collaboration (SPRINT Year 2)
Part 3: Multi-project Distributed Collaboration (SPRINT Year 3)
Conclusion

The “Common IOS Principles” based on OSLC technologies allows a step by step implementation approach.

Based on this agreement of communication and data exchange formats one can build stable and future proof fundament.

The OSLC Domains are used as the common interoperability part

Semantic Mediation is used in addition to the OSLC domains, to allow the interoperability based on non OSLC concepts.
Thank you for your attention!

Time for your Questions

Visit us at: www.sprint-iot.eu

Andreas Keis (EADS Innovation Works, Newport, United Kingdom)

Andreas.Keis@eads.com

Parham Vasaiely (EADS Innovation Works, Newport, United Kingdom)

Parham.Vasaiely@eads.com

Uri Shani (IBM Israel Science and Technology Ltd., Haifa)

SHANI@il.ibm.com